抽签儿时先抽和后抽概率甲子顺序(抽签时签都撒出来)
抽签时先抽和后抽概率一样吗
抽签时先抽和后抽概率一样。
假设参与抽签的四个人为ABCD,字母的顺序对应着他们抽签的顺序。
A是第1个抽签的,他的中奖概率为1/四、B是第2个抽签的人,所以奖品有可能已经确定被A抽走了,而A中奖的概率为1/4,总之A没有将奖品抽走的概率为3/四、而假如A没有将奖品抽走,那么B中奖的概率就提高到了1/3,所以B的总体中奖概率就是3/4乘以1/3,等于1/4,显然,B和A一样,中奖概率都是1/四、
接着下面是C,计算方法和B一样,A和B已经抽了两次,所以奖品依然没有被抽走的概率为2/4,而假如奖品没有被抽走,C的中奖率为1/2,2/4乘以1/2就等于1/4,C的中奖概率也是1/四、最后是D,依照上面的计算方法,D的中奖概率为1/4乘以1,同样是1/四、
抽签优缺点
抽签法又称“抓阄法”,它是先将调查总体的每个单位编号,紧接着采用随机的方式方法任意抽取号码,直到抽足样本。一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
抽签法的优点是简单易行,缺点是当总体的容量特别大时,费时、费力,又不方便。假如标号的签搅拌得不均衡,会致使抽样不公平。
抽签时先抽和后抽中签的几率是多少?
都是相等的,对于抽签的人来说,是公平的。
无论这几个人怎么抽签,他们最后抽出来的结果不外乎是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必定是相等的。
基本规则
1。各地区民间抽签的签诗多数都是28个签组
成的(实际是27个签加上1个站签),而庵、堂、寺、观、多以60签或100签为主进行占卜的,由于民间签的数字是以28星宿象来代表的。
60签的数字是以六十甲子来预示的,100签的数字是应用八卦中的64卦和6爻的总数演变而来的如8×8 +6×6 =100。有的人认为100签的数字是依据12月份,150%节气和72候的总和而成的。
2。按惯例抽签者烧完香后,在神像面前聚精会神地在心里默念出自已所祈求的意图和内容,紧接着从签筒中任意抽一根签出来(有一些地方抽签是用摇签的方式)后,再把桌面上的“圣杯”(有一些地方称为茭)扔到地上,有一正面一反面的才算是这一签,要不然就得重新再抽。
抽签的先后顺序是否作用与影响中奖概率?
均等,无论谁先抽都是公平的。
用一个普通情况来证明。假设总共有n个签,而其中m个是“中”的。第1个人抽中的机会显然是m/n。从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这便是我们总的样本空间。在这几个排列中,要确保第2个人中签,他一共有m种抽法。
而这样第1个人可以从剩下的n-1个签中任意选择,故确保第2个人抽中的方式方法一共有m(n-1)种。于是“第2个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
抽签的先后顺序与结果无关
使用类似的办法可以证明,从此以后每一个人中签的机会都是m/n。其实也就是说此问题还有更简单容易的想法。无论这几个人怎么抽签,他们最后抽出来的结果不外乎是n个签的一个排列组合而已。
在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必定是相等的。抽签选择是一种较公平的抉择方法,在不公布结果的情形下,抽签先后顺序是不会作用与影响中奖概率的。
抽奖先抽和后抽 抽中概率为啥一样
两种情况。
若先抽放回,则保证总数一样。抽中概率为一样的。如:共有三个球,前者抽中奖概率为:1/3、后者抽中奖概率为:1/3
若先抽不放回,若先抽者没中,则后抽者抽中概率更大。如:共有三个球,仅有一个球中奖,前者抽中奖概率为:1/3、后者抽中奖概率为:1/2
抽签时先抽和后抽的中前机会均等吗?
生活之中有一个需要用到概率知识的常见局面:比较少的东西要分给比较多的人,打比方说把3张电影票分给5个人,因为不够分,只好用抽签的形式分配。一个显然的问题是:先抽和后抽的中签机会均等么?答案是:均等,无论谁先抽都是公平的。
我们索性用一个普通情况来证明。假设总共有n个签,而其中m个是“中”的。第1个人抽中的机会显然是m/n。那么第2个人抽中的概率怎么计算呢?
大家都清楚从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这便是我们总的样本空间。在这几个排列中,要确保第2个人中签,他一共有m种抽法;而这样第1个人可以从剩下的n-1个签中任意选择,故确保第2个人抽中的方式方法一共有m(n-1)种。于是“第2个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
抽签的先后顺序与结果无关
使用类似的办法可以证明,从此以后每一个人中签的机会都是m/n。
其实也就是说此问题还有更简单容易的想法。无论这几个人怎么抽签,他们最后抽出来的结果不外乎是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必定是相等的。
抽签的顺序对结果有作用与影响吗?
均等,无论谁先抽都是公平的。
用一个普通情况来证明。假设总共有n个签,而其中m个是“中”的。第1个人抽中的机会显然是m/n。从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这便是我们总的样本空间。在这几个排列中,要确保第2个人中签,他一共有m种抽法。
而这样第1个人可以从剩下的n-1个签中任意选择,故确保第2个人抽中的方式方法一共有m(n-1)种。于是“第2个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
抽签的先后顺序与结果无关
使用类似的办法可以证明,从此以后每一个人中签的机会都是m/n。其实也就是说此问题还有更简单容易的想法。无论这几个人怎么抽签,他们最后抽出来的结果不外乎是n个签的一个排列组合而已。
在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必定是相等的。抽签选择是一种较公平的抉择方法,在不公布结果的情形下,抽签先后顺序是不会作用与影响中奖概率的。