抽签时先抽和后抽的几率相不相等(概率几率问题)
抽签时先抽和后抽中签的几率是相等的还是不等的?
相等。
抽签无论谁先抽都是相等公平的。无论这几个人怎么抽签,他们最后抽出来的结果不外乎是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必定是相等的。
在生活和工作之中,我们还会遇见一类和抽签很像的事情,但这类问题与抽签问题并不相同。打比方说在单位开会或者团建的时刻,领路人经常会出其不意提出一些烧脑的问题,而面对如此问题,我们first of all应该弄清的是先回答还是后回答。
计算验证:
从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这便是我们总的样本空间。在这几个排列中,要确保第2个人中签,他一共有m种抽法。
而这样第1个人可以从剩下的n-1个签中任意选择,故确保第2个人抽中的方式方法一共有m(n-1)种。于是“第2个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
抽签时先抽和后抽中奖的几率是
抽签时先抽和后抽中奖的几率是相同的。抽签时不管谁抽到签都不打开,先抽和后抽的中奖概率是相同的;假如第1个人抽签后打开最终,则后面的人抽签中奖的概率与本题中的中奖概率是不一样的问题。
抽签时先抽和后抽的中签机会均等吗?
相等。
生活之中有一个需要用到概率知识的常见局面:比较少的东西要分给比较多的人,打比方说把3张电影票分给5个人,因为不够分,只好用抽签的形式分配。一个显然的问题是:先抽和后抽的中签机会均等么?答案是:均等,无论谁先抽都是公平的。
我们索性用一个普通情况来证明。假设总共有n个签,而其中m个是“中”的。第1个人抽中的机会显然是m/n。那么第2个人抽中的概率怎么计算呢?
大家都清楚从n个签中按顺序任意抽取两个,一共有n(n-1)种方法,这便是我们总的样本空间。在这几个排列中,要确保第2个人中签,他一共有m种抽法;而这样第1个人可以从剩下的n-1个签中任意选择,故确保第2个人抽中的方式方法一共有m(n-1)种。于是“第2个人抽中的概率”,就是m(n-1)/n(n-1),仍然等于m/n。
抽签的先后顺序与结果无关
使用类似的办法可以证明,从此以后每一个人中签的机会都是m/n。
其实也就是说此问题还有更简单容易的想法。无论这几个人怎么抽签,他们最后抽出来的结果不外乎是n个签的一个排列组合而已。在这个排列组合中没有任何一个位置比别人特殊,于是每个位置中签的可能性必定是相等的。
抽签时每抽一次看一次结果和全部抽完一起看结果的几率有差异吗
概率相同,不过掌控于谁手中不一定。极端的例子,二个人,抽两个签。只要第1个人抽完了,后一个人也就确定了不用抽了,二个人的概率都是1/二、不过呢这个概率都是第1个人产生的,第2个人中不中取决于第1自个的手是还是不是臭。
抽签时先抽和后抽中奖的几率是
抽签时先抽和后抽中奖的几率是相同的。抽签时不管谁抽到签都不打开,先抽和后抽的中奖概率是相同的;假如第1个人抽签后打开最终,则后面的人抽签中奖的概率与本题中的中奖概率是不一样的问题。
抽签时先抽和后抽概率一样吗
抽签时先抽和后抽概率一样。抽签法是将调查总体的每个单位编号,再任意抽取号码,直到抽足样本的方式方法。抽签原理来自全概率公式,指抽签顺序和中签概率无关。如十张签由10个人抽去,其中有4张难签,任何人抽到难签的概率都是4/10,与抽签的次序无关。
抽签时先抽和后抽概率一样吗
抽签法又称“抓阄法”,主要使用于总体容量还算小的事务。因为抽签法简单易实施,因此应用非常广泛。
抽签原理的例子:打比方说十万张票中只有10个特等奖,则被十万个人抽去,不管次序怎样,任何人的中奖概率都是10万分之十,即万分之一。